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Molecular landscapes of human hippocampal immature neurons across lifespan   
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Supplementary Figures 

Supplementary Fig. 1 | Integration and characteristics of human hippocampal scRNA-

seq/snRNA-seq datasets across the lifespan. a, UMAP visualization of cells from human 
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hippocampal scRNA-seq/snRNA-seq datasets across the lifespan upon integration using canonical 

correlation analysis (CCA)36, colored by age (left) and cluster (right). The prenatal dataset was from 

a published study34 and all postnatal ones were generated in the current study. b, Expression patterns 

of marker genes used to determine cluster identities. c, UMAP visualization of the integrated human 

hippocampal dataset split by age (left column) and by specimen within each age group (right 

column). GW: gestational week; yrs: years. See Fig. 1b and Extended Data Fig. 1b for plots for the 

infant group (0-2 years). See Supplementary Table 1 for de-identified specimen information, 

Supplementary Table 2 for sequencing characteristics, and Supplementary Table 3 for information 

on the previously published datasets that were used.
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Supplementary Fig. 2 | scVI correction of hippocampal scRNA-seq/snRNA-seq datasets across 

ages for sequencing variation. a, Performance of the scVI algorithm40, a deep generative modeling 

analytic method for correcting scRNA-seq/snRNA-seq data matrices for batch effect removal. Line 

plot showing the likelihood change for the training error (blue) and the testing error (orange) across 

the 100 epochs of training. b, UMAP visualization of cells from human hippocampal scRNA-

seq/snRNA-seq datasets across ages after scVI correction and unsupervised clustering, colored by 

age (left) and by cluster (right). c, Heatmap showing the overlap of cluster membership using the 

dataset processed by scVI (y-axis) versus that aligned with canonical correlation analysis (x-axis, 
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CCA36). Colors indicate the fraction of total cells per CCA-aligned cluster per age group assigned to 

each scVI cluster. Robust clustering was achieved post-scVI correction with excellent cluster 

correspondence to the results from CCA, a state-of-the-art cell alignment tool, indicating effective 

batch correction. d, Heatmap showing the expression of the housekeeping “stably-expressed 

genes”39,63 in all cells across ages in the uncorrected raw dataset versus after the correction and 

integration using the ‘SC Transform’ (built in Seurat59) and the scVI methods. 
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Supplementary Fig. 3 | Common molecular signatures of human imGCs irrespective of age. 

Gene ontology network of biological processes associated with the common human imGCs-enriched 

genes across ages in comparison to mGCs, colored by FDR-adjusted p-value. Only significantly 

enriched nodes are displayed (one-sided hypergeometric test, p(FDR) < 0.05). The node size 

represents the term enrichment significance. Examples of the most significant terms per group are 

shown. See Fig. 3b for a summary bar plot and Supplementary Table 6 for the list of GO terms. 
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Supplementary Fig. 4 | Transcriptomic shifts in human imGCs across ages. a, Pseudo-age gene 
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co-variation kinetics analysis in Monocle41 revealed five distinct age-dependent gene expression 

patterns in human imGCs (likelihood ratio test, Benjamini-Hochberg-adjusted p-value < 0.01, q-

value < 0.01). b-f, Gene ontology network of biological processes associated with genes in each 

pattern, colored by FDR-adjusted p-value. Only significantly enriched nodes are displayed (one-

sided hypergeometric test, p(FDR) < 0.05). The node size represents the term enrichment 

significance. Examples of the most significant terms per group are shown. See Supplementary Table 

8 for the lists of GO terms. 
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Supplementary Fig. 5 | Interactions between human imGCs and different neighboring cell 

types in the dentate gyrus across ages. Shown are Circos plot (a) and bar plot (b) displaying the 

number of specific ligand-receptor interaction pairs between human imGCs and their neighboring 

cell types in the dentate gyrus of the corresponding specimen across ages. Specificity of the 

interactions was determined by a one-sided randomization test in CellPhoneDB42 and a p-value < 

0.05 was considered statistically significant. Colors represent cell types within each age group. Dots 

represent number of significant interactions for each cell type pair in each specimen. Values 

represent mean ± s.e.m. (n = 28 specimens). 
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Supplementary Fig. 6 | Expression of risk genes for neurological disorders in human imGCs 

and mGCs across the lifespan. Red-blue heatmaps depict expression patterns of the risk genes of 

neurological or psychiatric disorders in the human imGCs and mGCs across the lifespan. 
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